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Introduction

　The bootstrap resampling method provides a powerful procedure for estimating the variance of a 

parameter of a function. For this computer-based method we can refer to Efron et al. [1], Davison et al. [2], 

Foster et al. [3, 4], Joy et al. [5] and Good [6].

　For the psychophysical experiment by constant stimuli method, Nagai et al. [7] proposed the statistical 

significance testing of difference between multiple thresholds. Bach [8], Beck et al. [9] and Schulze-Bonse 

et al. [10] developed the automated procedures on the personal computer for the measurements of visual 

acuity.

　Mita et al. [11] developed a statistical method for evaluating the logarithmic visual acuity (LogVA) 

changes in an individual, and calculated LogVA ± SD (SD : standard deviation) by logistic regression, and 

also evaluated it using Nagai’s test of significant difference.

　The categorial data analysis and the logistic regression have been studied by McCullagh et al. [12], 

Christensen [13], Harrell [14] and Agresti [15].

　In the present paper we propose the non-parametric bootstrap resampling for the problem of 

psychophysical threshold estimates. We propose the logistic regression with guessing rate and formulation 

of deviance residuals in sections 2 and 3. We show the log-likelihood ratio test statistics in section 4, and 
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the non-parametric bootstrap resampling and testing of hypothesis in sections 5 and 6. Finally, in section 7 

we present an application of our algorithm to psychophysical threshold estimates in the visual acuity test.

Logistic regression with guessing rate

　We assume that the logit function is expressed in the form:

logit ( )
1

,logp
p

p
x0

0

0
/ a b

-
= +

where p0 is the (primitive) probability, x is the explanatory variable and a, b are constants. Then p0 is given 

by

; , .expp x x10
1a b a b= + - - -] ]]g gg

　We introduce the third parameter c ( 0 ≤ c < 1 ) for including the guessing rate. Then we have the 

probability p such that

, ; ,; 1 .; , , p xp xp x 00 a b a bca b c = + -] ] ]]g g gg

　Let

, , , ,X x j N1 2j j …n= =] g" ,

be the set of binomial observations where xj ( j = 1, 2, ··· , N ) are the explanatory variables for j-th ( j = 1, 2,  

··· , N ) observations respectively and nj ( j = 1, 2, ··· , N ) are outcome data:
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Then the logarithmic binomial likelihood L ( a, b, c ) is given by
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where pj = p ( xj ; a, b, c ) ( j = 1, 2, ···, N ). We assume that c is a known constant c0 ( 0 ≤ c0 < 1 ). Then the 

partial derivatives of L ( a, b, c0 ) with respect to a and b are given by
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　We define the following notations for easy description:
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　We shall obtain a and b by adopting the Fisher score method. Let at, bt, f t, gt ( t = 0, 1, 2, ··· ) be the 

values of a, b, f , g at iterative step t ( t = 0, 1, 2, ··· ) and let a0 = b0 = 0. Then we can write the algorithm for 

determining a and b such that
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where ( ∂ (, ) / ∂ (, ) ) is a Jacobian matrix. We stop the above iterative procedure if

Norm v v v vt t T t t1 1 1/ f- -+ +] ]g g

is satisfied for sufficiently small positive number f.

　Let ,a bt t , and Ft  be the optimal values of a, b and F respectively. Then by the Cramér-Rao lower bound, 

we can obtain variances such that
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where var at] g and var bt_ i are variances of at and bt respectively, , ,cov cova b b a=t t t t_ __i ii is the covariance 

of at and bt, se(at) and se(bt) are standard errors of at and bt respectively, r r=ab ba] g is the correlation factor 

between at and bt.

Deviance and deviance residual

　Let lt be the maximum binomial likelihood:
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where , , ,p j N1 2j g=t ] g is the probability given by optimal parameters at, bt and c0
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( j = 1, 2, ··· , N ).

　Then we can obtain the deviance D of logistic regression:
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the deviance D is given by

.D d j
j

N

1

=
=

!

The deviance residual fj is given by

sgn p dj j j jf n= -t] g

( j = 1, 2, ··· , N ),

where sgn(y) is the sign function:
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Then we can write the deviance residual fj explicitly such that 
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( j = 1, 2, ··· , N ).

Log-likelihood ratio test statistics of two-sample problem

　Let X1 and X2 be two samples from the populations which have possibly different probability distributions  

U1 and U2 respectively. We shall test the following hypothesis:

null hypothesis H0 : U1 = U2,

alternative hypothesis H1 : U1 ≠ U2.

　Let ,l k 1 2k =t ] g be the maximum binomial likelihood of samples ,X k 1 2k =] g respectively. Let X3 be the 

combined sample of X1 and X2 :

.X X X3 1 2= '

Let l3t  be the maximum binomial likelihood of sample X3. Then we can define the log-likelihood ratio test 

statistics G such that:
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where l H0
t] g is the maximum binomial likelihood if H0 is satisfied, and l H1

t] g is the maximum binomial 

likelihood if H1 is satisfied. Let Dk ( k = 1, 2, 3 ) be the deviances which are obtained by logistic regression 

analysis for samples Xk ( k = 1, 2, 3 ) respectively. Dk ( k = 1, 2, 3 ) are given by

, , .logD l k2 1 2 3k k=- =t ] g

Then we have the log-likelihood ratio statistics G for the two-sample test:

.G D D D3 1 2= - +] g
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Non-parametric bootstrap resampling

(i) Bootstrap samples X *b
1  and X *b

2

　Let X1 be the set of binomial observations, and f1 be the set of deviance residuals of sample 1. Let B be 

the number of bootstrap samples. By adopting uniform random numbers, we draw B samples of size N1 

with replacements from f1 and we call them the bootstrap deviance residuals of sample 1:

f f f , , , , , , .j N b B1 2 1 2*b
j
b

j
b

1 1 1 　g g; ! f= = =] ]g g# -

　Then we obtain the bootstrap sample X *b
1  for sample 1 such that

, , , , , , , ,X x j N b B1 2 1 2*b
j j

b
1 1 　g gn= = =] ]g g# -
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( j = 1, 2, ··· , N1 ; b = 1, 2, ··· , B ).

　By adopting the similar method described above, we can also obtain bootstrap deviance residuals f*b2  ( b = 

1, 2, ··· , B ) and bootstrap samples X *b
2  ( b = 1, 2, ··· , B ) from the set of binomial observations X2 of sample 2.

(ii) Bootstrap sample X *b
3

　The bootstrap sample X *b
3  ( b = 1, 2, ··· , B ) for sample 3 is obtained by the following Steps 1, 2 and 3.

Step 1:

　Let f*b1  be the bootstrap deviance residuals of sample 1:

, , , , , , .j N b B1 2 1 2*b
j
b

j
b

1 1 1 　g g; !f f f f= = =] ]g g# -

We obtain the bootstrap sample X *b
31 ( b = 1, 2, ··· , B ) by using f*b1  ( b = 1, 2, ··· , B ) for sample 1 and the 

optimal parameters 3at , 3bt  and c0 for sample 3 such that

, , , , , , , ,X x j N b B1 2 1 2*b
j j

b
31 1 　g gn= = =] ]g g# -

where

,p x p x1j
b b

j
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j j j

b
0

1
3 3a b f= + - - - -t t t] __g ii

( j = 1, 2, ··· , N1 ; b = 1, 2, ··· , B ).

Step 2:

　By adopting the similar method in step 1, we obtain the bootstrap sample X *b
32 ( b = 1, 2, ··· , B ) by using 

f*b
2  ( b = 1, 2, ··· , B ) for sample 2 and the optimal parameters 3at , 3bt  and c0 for sample 3.

Step 3:

　By combining X *b
31 and X *b

32 ( b = 1, 2, ··· , B ), we obtain the bootstrap sample X *b
3  ( b = 1, 2, ··· , B ) for 

sample 3 such that
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, , , .X X X b B1 2* * *b b b
3 31 32　 g= =] g'

Hypothesis testing with the bootstrap resampling

　Let Dk ( k = 1, 2, 3 ) be the deviances obtained from the sets of binomial observations Xk ( k = 1, 2, 3 )

respectively. Let Dk
b ( k = 1, 2, 3 ; b = 1, 2, ··· , B ) be the bootstrap deviances obtained from the bootstrap 

samples Xk
*b ( k = 1, 2, 3 ; b = 1, 2, ··· , B ) respectively. Let G and Gb ( b = 1, 2, ··· , B ) be the log-likelihood 

ratio test statistics defined by

,G D D D3 1 2= - +] g

G D D Db b b b
3 1 2= - +_ i

( b = 1, 2, ··· , B ).

　Then we have the achieved significance level ASL:
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where mb ( b = 1, 2, ··· , B ) are the notations defined by
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( b = 1, 2, ··· , B ).

For avoiding ASL = 0, ASL is also defined by

ASL
B 1

1b
B b
1m

=
+

+=!

when b
B b
1 1m f=!  ( f is a sufficiently small positive number). We can say that the null hypothesis H0 ( two 

samples X1 and X2 have common probability distributions: U1 = U2 ) is rejected if ASL is less than or equal 

to the significance level.

Application to psychophysical threshold estimates

(i) Mathematical notations and definitions

　Let X be the set of binomial observations:

, , , , .X x j N1 2j j gn= =] g" ,

Let Xi ( i = 1, 2, ··· , n ) be the properly chosen intervals of the explanatory variable and let x ir  ( i = 1, 2, ··· , 

n ) be the mid-point of Xi. We assume that n ≤ N. Then we define the following notations:

if

if
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We note that .N n i
i
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　Let ; , ,p x xp 0a b c=t t t] _g i be the probability given by optimal parameters at, bt and c0 such that

,p x p x p x10 0 0c= + -t t t] ] ]]g g gg

.expp x x10
1a b= + - - -t t t] __g ii

　We define the psychophysical threshold p with guessing rate c0

.p
2
11 0

p
c

=
+-t d n

(ii) The visual acuity test of the two-sample problem

　Since we adopt the Landolt-C of four different orientations in our visual acuity test, the guessing rate c0 

is chosen as

c0  = 0.25.

　The explanatory variable x in our measurement is the logarithmic visual acuity.

　Let X1 (sample 1) and X2 (sample 2) be samples from the populations which have possibly different 

probability distributions U1 and U2 respectively. We shall test the following hypothesis:

null hypothesis H0 : U1 = U2,

alternative hypothesis H1 : U1 ≠ U2.

　We took the data from 1 individual with no visual abnormalities in order to assess our bootstrap 

algorithm. The LogVA (Logarithmic Visual Acuity) is 0.3681 ± 0.0209 in complete refractive correction and 

we adopt this data set as sample 1. The data of sample 2 is taken in +0.50D incomplete refractive correction 

from the same individual of sample 1.

　Table 1 and Table 2 show the observed data of sample 1 ( N1 = 120 ) and sample 2 ( N2 = 80 ) respectively. 

Table 3 shows sample 3 ( N3 = 200 ) which is constructed by the combined data of samples 1 and 2.

　The logistic regression results of samples 1, 2 and 3 are shown in Table 4. Figures 1, 2, and 3 show the 

observed data and ; , ,p x xp 0a b c=t t t] _g i of samples 1, 2 and 3 respectively. Psychophysical thresholds kpt  ( k 

= 1, 2, 3 ) at probability = ( 1 + c0 ) / 2 = 0.625 are shown in Table 4.

　Now we shall prove that the samples 1 and 2 are taken from the populations which have different 

distributions.

Table 1    Observed data of sample 1　　　　　　　　Table 2    Observed data of sample 2

1047700_川崎英文誌17巻2号_2校_佐藤 By CS3<P63>　

Table 1: Observed data of sample 1
i x̄i ni mi mi/ni

1 0.156975 0 0 -

2 0.198368 20 19 0.95

3 0.244125 20 18 0.9

4 0.295278 20 18 0.9

5 0.353270 20 13 0.65

6 0.420216 20 8 0.4

7 0.499398 20 8 0.4

N1 =
7

�

i=1

ni = 120

14

Table 2: Observed data of sample 2
i x̄i ni mi mi/ni

1 0.156975 13 9 0.6923

2 0.198368 14 12 0.8571

3 0.244125 13 12 0.9231

4 0.295278 13 5 0.3846

5 0.353270 13 2 0.1538

6 0.420216 14 3 0.2143

7 0.499398 0 0 -

N2 =
7

�

i=1

ni = 80

15
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Table 3    Observed data of sample 3　　　　Table 4    Logistic regression results of samples 1, 2 and 3

Fig. 1    Observed data and ; , ,p x xp 0a b c=t t t] _g i of sample 1

Fig. 2    Observed data and ; , ,p x xp 0a b c=t t t] _g i of sample 2

Fig. 3    Observed data and ; , ,p x xp 0a b c=t t t] _g i of sample 3

Table 3: Observed data of sample 3
i x̄i ni mi mi/ni

1 0.156975 13 9 0.6923

2 0.198368 34 31 0.9118

3 0.244125 33 30 0.9091

4 0.295278 33 23 0.6970

5 0.353270 33 15 0.4545

6 0.420216 34 11 0.3235

7 0.499398 20 8 0.4

N3 =
7

�

i=1

ni = 200

16

Table 4: Logistic regression results of samples 1, 2 and 3
sample 1 (k = 1) sample 2 (k = 2) sample 3 (k = 3)

Nk 120 80 200

α̂k 6.2105 4.5209 4.4349

β̂k -16.8720 -18.3394 -14.1192

γ0 0.25 0.25 0.25

se(α̂k) 1.4383 1.5872 0.9012

se(β̂k) 4.2411 6.6365 3.0423

se(γ0) 0.0 0.0 0.0

ξ̂k 0.3681 0.2465 0.3141

se(ξ̂k) 0.0209 0.0214 0.0170

Dk 115.546 90.241 224.026

G = D3 − (D1 +D2) = 18.239

17
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  x

Figure 1: Observed data and p̂(x) = p(x; α̂, β̂, γ0) of sample 1

20

1.00

0.75

0.50

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6
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  x

Figure 2: Observed data and p̂(x) = p(x; α̂, β̂, γ0) of sample 2
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Figure 3: Observed data and p̂(x) = p(x; α̂, β̂, γ0) of sample 3

22
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　The results of non-parametric bootstrap resampling are shown in Table 5. Since K b
B

b1m= =_ i!  is small 

for B = 2000, ASL is obtained as

1
. .ASL

B
K

1
0 0005=

+
+
=

This ASL shows that H0 is rejected at a very small significant level.

Table 5    Two-sample test by bootstrap resampling

(iii) The visual acuity test of one-sample problem

　We use the same example described in (ii). We shall test here the parameters a, b and threshold p by 

using bootstrap resampling. Since the methods of one-sample test for a, b and p are the same, we show here 

only the case of p.

　We adopt the following hypothesis:

null hypothesis H0 : p = pc,

alternative hypothesis H1 : p ≠ pc,

where pc is a prescribed value (which may be chosen from the threshold of control sample). Let pt and se 

(pt) be the threshold and its standard error respectively of the (original) logistic regression. Let zt be the test 

statistics defined by

se
.z c

p

p p
=
-t
t

t

_ i

Let pb ( b = 1, 2, ··· , B ) be the thresholds obtained by the logistic regression of each bootstrap resampling. 

Let pr be the mean of pb ( b = 1, 2, ··· , B ) :

.
B
1

b

B

1

p p=
=

br !

Let se(p) be the standard error of pb ( b = 1, 2, ··· , B ) :

.se
B 2
1

b

B
2

1

p pp =
-

-
=

b r] ]g g!

Then we have the bootstrap test statistics zb ( b = 1, 2, ··· , B ) as

se
.zb

b

p

p p
=

-r

] g

Table 5: Two-sample test by bootstrap resampling
sample 1 (k = 1) sample 2 (k = 2) sample 3 (k = 3)

Nk 120 80 200

Bk 2000 2000 2000

mean(Db
k) 8.962 6.612 17.862

Gb = Db
3 − (Db

1 +Db
2) (b = 1, 2, · · · , B)

Λ =
�B

b=1
λb = 0

ASL = Λ + 1
B + 1 = 0.0005

18
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We have the achieved significance level ASL:

,ASL
B
b
B b
1m

=
=!

where mb ( b = 1, 2, ··· , B ) are the notations defined by

if

if

,

z z

1

0

b

b

b 1; ; ; ;
m =

z z; ;$; ;t

t
*

( b = 1, 2, ··· , B ).

For avoiding ASL = 0, ASL is also defined by

,ASL
B 1

1b
B b
1m

=
+

+=!

when b
B b
1 1m f=!  ( f is a sufficiently small positive number). We can say that the null hypothesis H0 ( p = 

pc) is rejected if ASL is less than or equal to the significance level.

　In the cases of one-sample tests of a and b, we adopt the following hypothesis:

null hypothesis H0 : a = 0,

alternative hypothesis H1 : a ≠ 0,

for a, and

null hypothesis H0 : b = 0,

alternative hypothesis H1 : b ≠ 0,

for b.

　One-sample tests by bootstrap resampling for a, b, p in samples 1, 2 are shown in Table 6.

Table 6    One-sample test by bootstrap resampling
Table 6: One-sample test by bootstrap resampling

sample 1 (k = 1) sample 2 (k = 2)

Nk 120 80

Bk 2000 2000

α̂k 6.2105 4.5209

ASL∗1
k 0.0005 0.0050

β̂k -16.8720 -18.3394

ASL∗2
k 0.0005 0.0095

ξ̂k 0.3681 0.2465

ASL∗3
k - 0.0005

min I0.95 0.355 0.231

max I0.95 0.380 0.262
∗1 H0 : αk = 0, H1 : αk �= 0 (k = 1, 2)
∗2 H0 : βk = 0, H1 : βk �= 0 (k = 1, 2)
∗3 H0 : ξ2 = ξ1, H1 : ξ2 �= ξ1

Λk =
�Bk

b=1
λb (k = 1, 2)

ASLk = Λk + 1
Bk + 1
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(iv) Confidence interval of threshold

　The symbols of pt, se(pt), pb ( b = 1, 2, ··· , B ), pr and se(p) are the same as in (iii).

　Let } (z) be the cumulative distribution function of bootstrap resampling defined by 

,} z
B

z z
1 b

b

B

1

　 3 31 1{= - +
=

] ] ]g g g!

where {b (z) ( b = 1, 2, ··· , B ) are functions of z :

z z1

if

if

,
z

z z1

0

b

b

b

$
{ =] g *

( b = 1, 2, ··· , B ).

We note that } (z) satisfies

,} z z0　" " 3-] ]g g

.} z z1　" " 3+] ]g g

Then we can obtain the confidence interval It of confidence coefficient t ( 0 < t < 1 ) such that

: se se .} }I
2
1

2
11 1

$ $# #p
t

p p p
t

p-
-

+
+

t
- -t td ] d ]n g n g

The confidence intervals I0.95 of threshold p for samples 1 and 2 are shown in Table 6.

Concluding remarks

　We proposed the bootstrap resampling algorithm for the psychophysical threshold estimates. Main 

properties of our algorithm are summarized in the following:

(i) the logistic regression including the guessing rate,

(ii) the non-parametric bootstrap resampling with log-likelihood ratio statistics for two-sample testing,

(iii) the non-parametric bootstrap resampling for one-sample testing to certify the values of parameters and 

threshold obtained by logistic regression.

　We applied our bootstrap algorithm to the visual acuity test problem. Our algorithm does not require 

the identity of the number of observations between two samples. We can say that the bootstrap resampling 

provides a useful tool which has the flexibility of sampling in actual visual acuity measurements.
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