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Abstract

    Tactile stimulation of the pharyngo-laryngeal region elicits severe gagging, which is characterized 

by simultaneous contraction of the costal diaphragm and abdominal muscles. While severe gagging is 

associated with problems in oral feeding in children, routine dental treatment and gastrointestinal 

endoscopy, little is known about the neural mechanism of this reflex. In the present study using 

decerebrate rats, we observed dynamic changes in the activities of the costal and crural diaphragm, 

abdominal muscles, and infrahyoid muscles, and in pharyngeal and esophageal pressure during 

severe gagging, and determined the most suitable stimulation of the superior laryngeal nerve 

(SLN) for induction. High-frequency stimulation of the SLN at 50 Hz (30 μA, 50 pulses) elicited 

severe gagging in all of the rats. Severe gagging had the following characteristics: 1) simultaneous 

activation of the costal diaphragm and abdominal muscles, but relaxation of the crural diaphragm; 

2) infrahyoid muscle contraction and temporary decrease in pharyngeal pressure; 3) retrograde 

contraction of esophageal striated muscles; and 4) decrease of blood pressure, which was mediated 

by a vagal muscarinic pathway. The identification of characteristic changes in respiratory muscles 

and autonomic responses should assist future studies on the mechanism of severe gagging.

Introduction

   The gag reflex is defined, in a narrow sense, as constriction of the pharynx [1, 2]. More traditional 

descriptions include complex behavioral responses such as lowering of the mandible, forward and 

downward movement of the tongue, and pharyngeal and velar constriction [2-4]. Furthermore, more severe 

gagging involves forceful pharyngeal and velar contraction and simultaneous contractions of the costal 

diaphragm and abdominal muscles (i.e., retching) [2-6]. 

    Severe gagging is considered to prevent a food bolus from being lodged in the pharyngo-laryngeal region 

and the upper esophagus. A rapid increase in internal gastric pressure is produced by simultaneous 

contraction of the costal diaphragm and abdominal muscles, which spreads to the esophagus.

   Clinical problems related to severe gagging have been reported. Children who were orally deprived 
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during infancy cannot have a meal since severe gagging was easily elicited by a food bolus [7]. Sensitive 

severe gagging prevents dental treatment [8] and gastrointestinal endoscopy [9, 10]. While there have been 

many clinical reports on severe gagging, little is known about the neural mechanism of this reflex.

   In previous human studies, when subjects applied a tactile stimulation to their own oropharyngeal 

mucosa, severe gagging was elicited in more than 90 % of the subjects [6]. However, it is difficult to elicit 

the reflex repeatedly and to standardize the intensity of the pressure. Leder [3] reported that tactile 

stimulation of the oro-pharyngeal region by an examiner elicited severe gagging in only 3 % of normal adult 

volunteers. Hughes and Wiles [5] reported that touching or stroking of the oro-pharyngeal region by an 

examiner elicited severe gagging in 25.1 % of healthy adult volunteers. The probability of inducing severe 

gagging may vary according to the stimulation method and/or the stimulus intensity.

    In animal studies, retching in response to emetic stimuli has been well investigated by many researchers 

[11-15], however, there have been few studies on retching in severe gagging. Beyak et al. [16] observed 

that electrical stimulation of the superior laryngeal nerve (SLN) induced emesis, which may correspond 

to severe gagging, in only four of 16 cats. Fukuda and Koga [17] reported that severe gagging could not be 

induced by SLN stimulation alone, and was observed only when the SLN and abdominal vagal afferent 

were stimulated simultaneously in dogs. Cats and dogs are not suitable as animal models of severe gagging 

because induction of severe gagging is difficult. 

   In rats, Andrew [18] stated that mechanical stimulation of the pharynx elicited the gag reflex, and this 

reflex is considered to have features similar to those of a single retch [19, 20]. Our previous study using 

decerebrate rats showed that stimulation of the SLN (20 Hz) occasionally produced severe gagging under 

the administration of emetic drugs [21]. We reported that severe gagging was elicited by three sets of pulse 

train stimulation of the SLN at 100 Hz in all rats [22]. In a preliminary study, we found that single pulse 

train stimulation of the SLN at 50 Hz repeatedly elicited severe gagging without emetic drugs.

   Moreover, little is known about the details of the electromyographic activities of muscles and autonomic 

responses involved in severe gagging. In this study, we observed dynamic changes in the activities of 

the costal and crural diaphragm, abdominal muscles, and infrahyoid muscles, and in pharyngeal and 

esophageal pressure during severe gagging, and determined how the frequency and intensity of SLN 

stimulation could facilitate the induction of this reflex. These physiological features of somatomotor and 

autonomic responses may assist future studies on the mechanism of severe gagging. 

Materials and methods

   The experimental procedures were carried out in accordance with the Guiding Principles for the Care 

and Use of Animals in the Field of Physiological Science (Physiological Society of Japan). These procedures 

were approved by the Institutional Animal Care and Use Committee of Kawasaki University of Medical 

Welfare (No. 08-018). 

Surgical procedure 

   Experiments were performed on 25 male Sprague Dawley rats, weighing from 320 to 430 g, that were 

anesthetized by an intra-peritoneal injection of a mixture of urethane (0.7 g/kg) and α-chloralose (0.06 g/

kg). When necessary, supplemental doses of a mixture of urethane (0.12 g/kg) and α-chloralose (0.01 g/

kg) were given. A midline incision was made on the ventral side of the neck. A stainless steel cannula was 

inserted into the trachea to maintain the patency of the respiratory tract. Bilateral superior laryngeal 

nerves (SLNs) were isolated from the surrounding tissue and sectioned near the thyroid cartilage. The 

central cut end of the unilateral SLN was stimulated with a pulse train using bipolar platinum electrodes.
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    Decerebration was performed at the precollicular level as follows. The animals were fixed in a stereotaxic 

frame in the prone position after bilateral external and internal carotid and pterygopalantine arteries were 

ligated. The dorsal surface of the parietal bones was exposed through an incision along the midline. The 

bones were removed, the dura was incised and transection was performed at the precollicular level. The 

brain tissue rostral to the section was removed, and the cranial cavity was loosely packed with cotton balls. 

A stabilization period of 60 min was allowed after decerebration.

   Rats were removed from the frame and then rotated to the supine position. The blood pressure of the 

femoral artery was monitored. No further anesthetics were given after decerebration. Rectal temperature 

was maintained at 37-38 ℃ with a heating pad. 

Stimulation and recording

   Severe gagging was elicited by electrical stimulation of the SLN with a pulse train (intensity: 5, 10, 20 

and 30 μA, frequency: 5, 10, 20 and 50 Hz, number of pulses: 5, 10, 20, 30, 40 and 50, duration: 0.3 ms). 

The electromyographic activities of the inferior hyoid muscles and abdominal muscles were recorded. In 

addition, activities of the diaphragm, including the costal and crural parts, were recorded. Investigation 

revealed that the costal and/or crural parts of the diaphragm contracted when the severe gagging occurred, 

and the activities of these two parts were recorded separately in an additional experiment. Latex-rubber 

balloons connected to a pressure transducer were positioned 3 cm (pharynx), 5 cm (upper esophagus) and 9 

cm (lower esophagus) from the upper incisors, and inflated with ~0.1 ml of air. All data were digitized using 

an analog-to-digital converter (PowerLab/16sp; ADInstruments Pty Ltd., Bella Vista, Australia) and stored 

on a computer. The digitized data were analyzed using Chart ver. 5.0 software program (ADInstruments 

Pty Ltd., Bella Vista, Australia). 

Vagotomy and muscarinic antagonist administration

   To investigate the role of parasympathetic nerves in the autonomic response related to severe gagging, 

bilateral vagotomy was performed in 9 rats. Further, intravenous administration (5 mg/kg) of atropine 

methyl nitrate (Sigma Chemical Co., St. Louis, MO, U.S.A), which is a muscarinic acetylcholine receptor 

antagonist, was performed in 8 rats. This drug was dissolved in normal saline solution and administered 

through the femoral vein.

Assessment of esophageal responses

   Esophageal responses were analyzed using the Chart program. Each response was divided into two 

periods; namely, 2 seconds before the onset of SLN stimulation (P0) and 2 seconds after the onset of 

SLN stimulation (P1) for quantitative analysis. An esophageal integrated value based on the minimum 

value between P0 and P1 was calculated for each period. To normalize the data, the ratios of esophageal 

integrated value between P0 and P1 were used for analyses. 

Statistical analysis

   All values in the text are presented as means ± standard error (SE). Statistical analysis was performed 

with Wilcoxon signed-rank test using SPSS statistical analysis software (SPSS Ver. 15, SPSS Inc., Chicago, 

IL, U.S.A.). Significance level was taken as p < 0.05.
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Results

Identification of severe gagging induced by superior laryngeal nerve stimulation

   The severe gagging characteristically shows synchronous contraction of the diaphragm and abdominal 

muscles. Figure 1 shows an example of severe gagging elicited by SLN stimulation (50 Hz, 0.3 msec 

duration, 30 μA), and the following 2 swallowing reflexes. Intra-pharyngeal pressure rapidly increased at 

the onset of SLN stimulation, and this response was considered to be pharyngeal constriction in the gag 

reflex (indicated by “G”, Fig 1). After the gag reflex, synchronous contractions of the infrahyoid muscles 

(IH), diaphragm (DIA) and abdominal muscles (ABD) appeared; i.e., severe gagging (indicated by “SG”, 

Figs. 1-3). A decrease in pharyngeal pressure, synchronous increases in the upper (UE) and lower (LE) 

esophageal pressure and temporary decrease of blood pressure (BP) were observed simultaneously with 

severe gagging (Fig. 1). After the termination of SLN stimulation, the swallowing reflex was elicited 

spontaneously (indicated by “S”, Fig. 1.). Temporary activation of the infrahyoid muscles and a subsequent 

rapid increase in pharyngeal pressure were observed, and an increase in internal pressure from the 

pharynx to the upper and lower esophagus was propagated by orthodromic peristalsis (indicated by arrows, 

Fig. 1). Inspiratory activities of the diaphragm were temporarily suppressed (swallowing apnea, Fig. 1).

Fig. 1   �Dynamic changes in infrahyoid muscles, the diaphragm, abdominal muscles, pharynx, esophagus 
and blood pressure during severe gagging elicited by SLN stimulation. Electromyographic activities of 
infrahyoid muscles (IH), diaphragm (DIA) and abdominal muscles (ABD) were recorded. Changes in 
the internal pressure of the pharynx (3 cm from the upper incisors), upper esophagus (UE, 5 cm from 
the upper incisors) and lower esophagus (LE, 8 cm from the upper incisors) were recorded. Vertical 
lines under SG and S indicate the onset of severe gagging and the swallowing reflex, respectively. 
Arrows show the propagation of the increase in internal pressure from the pharynx to the esophagus. 
Abbreviations: BP, arterial blood pressure; G, gag reflex; SG, severe gagging; S, swallowing reflex.
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   The crural region of the diaphragm, not the costal region, is known to relax in the expulsive phase of the 

vomiting reflex [23, 24]. We examined the behaviors of these two distinct muscles during severe gagging. 

The costal diaphragm was activated synchronously with abdominal muscle activity, whereas the crural 

diaphragm was silent (Fig. 2).

Stimulus parameters of the SLN for induction of severe gagging

   We stimulated the SLN with various stimulation parameters to identify the threshold values at which 

severe gagging was induced (frequency: 5-50 Hz; number of pulses: 5-50; intensity: 5-30 μA; duration: 0.3 

ms) in 8 decerebrate rats. Firstly, to examine the effect of stimulus frequency, electrical stimulation of 5, 

10, 20 and 50 Hz at a constant intensity (30 μA) for 1 sec was applied to the SLN. SLN stimulation at 20 

Hz elicited severe gagging in 1 rat. However, SLN stimulation at 50 Hz was required for induction of severe 

gagging in the remaining 7 rats (Table 1, A). Secondly, the effects of stimulus intensity on the induction 

of severe gagging were investigated at a constant frequency and pulse number (50 Hz, 50 pulses). Severe 

gagging was elicited by stimulation of the SLN at 5 μA in 1 rat. SLN stimulation at more than 30 μA 

elicited severe gagging in all of the rats (Table 1, B).

Fig. 2   �Responses of the crural and costal diaphragm during severe gagging. The costal diaphragm, but not the 
crural part, contracted simultaneously with the abdominal muscles.

A frequency B intensity
(30 μA, 1 sec) (50 Hz, 50 pulses)

rat 1 50 Hz 20 μA
rat 2 20 Hz 5 μA
rat 3 50 Hz 10 μA
rat 4 50 Hz 10 μA
rat 5 50 Hz 10 μA
rat 6 50 Hz 30 μA
rat 7 50 Hz 20 μA
rat 8 50 Hz 20 μA

Table 1
Threshold of severe gagging inductionTable 1   Threshold of severe gagging induction
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Participation of vagal nerve in autonomic changes during severe gagging

   Autonomic changes associated with severe gagging were observed in this study. In the control recording, 

a rapid increase in pressure in the upper and lower esophagus and temporary decrease of blood pressure 

were observed (Fig. 3). The increase in lower esophageal pressure was diminished by cervical vagotomy, 

whereas upper esophageal pressure was reduced by vagotomy, as shown in Fig. 3A. Figure 3B showed 

that the increase in upper esophageal pressure was reduced by atropine administration, whereas lower 

esophageal pressure was not changed. Atropine antagonized decrease of blood pressure associated with 

severe gagging in all rats (Fig. 3B).

   To clarify the role of parasympathetic nerves in these autonomic changes, cervical vagotomy was 

conducted in 9 rats. The ratios of upper and lower esophageal integrated pressures between P0 and P1 were 

20.4 ± 3.48 and 6.84 ± 0.62, respectively (Fig. 4AB). The ratios of upper and lower esophageal integrated 

pressures between P0 and P1 were significantly diminished to 5.29 ± 1.26 and 0.60 ± 0.15, respectively 

(p<0.05, Fig. 4AB). 

   To investigate the roles of muscarinic receptors in esophageal contraction associated by severe gagging, 

administration of atropine (5 mg/kg, i.v.) was conducted in 8 rats. Atropine significantly reduced the 

increased pressure of the upper esophagus (Fig. 4A), however, it had no obvious effects on contraction of 

the lower esophagus (Fig. 4B). 

Fig. 3   �Effects of vagotomy and atropine on changes in esophageal motility and blood pressure during severe 
gagging. See text for details.
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Discussion

Stimulation used to induce severe gagging

    In previous studies, the frequency that has been used most often to induce swallowing in rats is between 

10 and 30 Hz [25-29]. Furthermore, the stimulus intensity that has been used to induce the swallowing 

reflex has been reported to be 10-200 μA [26, 28, 29]. There has been no mention of severe gagging in 

these studies. In the present study, SLN stimulation at 50 Hz and 30 μA elicited severe gagging in all of 

the rats. Our previous study [22] reported that SLN stimulation at 100 Hz elicited severe gagging in all 

rats. Thus, stimulation of the SLN at more than 50 Hz was considered to be most effective for induction of 

severe gagging. High-frequency stimulation of afferent nerves is known to produce temporal summation 

in secondary neurons. Thus, it seemed that temporal summation in the nucleus of the solitary tract (NST) 

where the SLN projects is necessary for induction of severe gagging. 

Features of severe gagging elicited by SLN stimulation

    Diaphragm and abdominal muscles. In the present study, high-frequency stimulation of the SLN elicited 

synchronous burst activities of the diaphragm and abdominal muscles, which correspond to severe gagging. 

However, stimulation of the SLN at 10-20 Hz also elicited the cough reflex in decerebrate cats [30, 31]. The 

main force of the cough reflex is considered to be burst activity of the diaphragm and abdominal muscles. 

The cough reflex was characterized by an expiratory motor act closely combined with a preceding deep 

inspiratory motor act [30-32]. In this study, however, no preceding diaphragmatic activity was observed 

before abdominal burst activities elicited by SLN stimulation. Thus, the synchronous burst activity of the 

Fig. 4   �Relative changes of integrated esophageal pressure associated with severe gagging by vagotomy 
(§, p<0.05, n=9) and atropine administration (*, p<0.05, n= 8).
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diaphragm and abdominal muscles did not result in the cough reflex.

    Stimulation of the SLN elicited simultaneous activation of the costal diaphragm and abdominal muscles, 

whereas crural diaphragm activity was not observed (Fig. 2). The somatomotor responses characterized by 

simultaneous contraction of the diaphragm and abdominal muscles are generally observed during retching 

and subsequent expulsion in an emetic response. It has been reported that the costal and crural parts of 

the diaphragm and abdominal muscles synchronously contract in retching, whereas the crural part of the 

diaphragm relaxes in the expulsion phase [23, 24]. The somatomotor activity patterns of the diaphragm 

and abdominal muscles in this study were similar to those in the expulsion phase. Relaxation of the crural 

diaphragm is believed to promote expulsion of the gastric contents. However, rats have a powerful barrier 

between the esophagus and stomach that would make it difficult to expel the gastric contents [33, 34]. In 

general, the vomiting and severe gagging have different roles in the defense system. The vomiting reflex 

mainly prevents toxic compounds from being absorbed in the lower alimentary canal. In contrast, severe 

gagging prevents foreign materials from blocking the upper alimentary canal. In fact, we have previously 

reported that SLN stimulation during hypoxia produced burst activities of the diaphragm and abdominal 

muscles, which was assumed to be severe gagging [21].

   Pharynx. A temporary decrease in pharyngeal pressure was observed simultaneously with the SLN-

induced severe gagging (Fig. 1). As described above, severe gagging is considered to prevent a bolus from 

blocking the upper alimentary canal. This may be why relaxation of the pharynx occurs simultaneously 

with severe gagging. 

   On the other hand, infrahyoid muscles contract with severe gagging. Groups of hypoid muscles are 

related to jaw-opening movement. In emetic behavior, the mouth is widely opened by the contraction of jaw-

opening muscles and hyoid muscles to expel the gastric contents [23]. In a human study, digastric muscle 

activity was reported to be associated with severe gagging [6]. Thus, a temporary decrease in pharyngeal 

pressure with severe gagging may be related to jaw-opening movement.

   Esophagus. Lang et al. [35] reported that retrograde contraction of the cervical esophagus was observed 

during the expulsion phase in dogs. In the present study, an increase in upper esophageal pressure was 

slightly preceded by an increase in lower esophagus pressure during severe gagging. This pattern of 

activity in the esophagus seems to be retrograde contraction, which was reported by Lang et al. [35] in 

dogs. However, they recoded electromyographic activity in the esophagus, whereas in our study we recorded 

intraesophageal pressure. Therefore, these pressure changes were due to body movement associated 

with actual severe gagging. Thus, we performed a further study using vagotomy and a neurotransmitter 

antagonist.

   The rat esophagus contains striated as well as smooth muscles over its entire length and electrical 

stimulation of vagus nerve elicits the contraction of both muscles [36]. Furthermore, it has been reported 

that the contraction of esophageal smooth muscles elicited by electrical stimulation of the vagus nerve was 

abolished by administration of the muscarinic acetylcholine receptor antagonist atropine, whereas that of 

esophageal striated muscles was not abolished [36]. We investigated the effect of atropine administration 

on esophageal changes associated with severe gagging. Atropine significantly suppressed upper esophageal 

response, whereas it did not influence lower esophageal response, as shown in Fig. 3B and 4AB. Thus, 

changes in upper esophageal pressure associated with severe gagging could be partly produced by the 

contraction of esophageal smooth muscles. However, changes in lower esophageal pressure could be partly 

produced by the contraction of esophageal striated muscles. Furthermore, the increase in lower esophageal 

pressure associated with severe gagging disappeared after cervical vagotomy in the present study (Fig. 
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3A and 4AB), however, the increase in upper esophageal pressure remained even after the vagotomy. The 

upper esophagus is known to be controlled by the pharyngo-esophageal nerves which are the vagal branch 

just above the nodose ganglia. Since the SLN merges with the vagus nerve below the nodose ganglia, 

vagotomy was performed at the cervical level. Thus, upper esophageal contraction with severe gagging 

remained after cervical vagotomy. 

   Blood pressure. Temporary decrease of blood pressure was observed following SLN stimulation that 

induced severe gagging (Fig. 1). However, SLN stimulation below 20 Hz seldom elicited such conspicuous 

changes in blood pressure. Vagotomy or atropine administration completely eliminated the decrease of 

blood pressure produced by SLN stimulation (Fig. 3). There have been no reports concerning the changes in 

blood pressure associated with severe gagging. Faber and Brody [37] reported that stimulation of the SLN 

produced frequency-dependent reductions in arterial pressure and heart rate. The carotid sinus, aortic 

depressor nerve and SLN are known to project to the intermediate and caudal portions of the NST in the 

medulla oblongata. Based on these observations, they concluded that the SLN may constitute a significant 

projection pathway for the baroreflex. Furthermore, Mendelowitz [38] reported that superior laryngeal 

neurons directly excite cardiac vagal neurons in the nucleus ambiguus in the medulla oblongata. Thus, 

the decrease of blood pressure elicited by high-frequency stimulation of the SLN is considered to be the 

baroreflex via a vagal pathway that involves a muscarinic synapse. 

   In conclusion, severe gagging had the following characteristics: 1) simultaneous activation of the 

costal diaphragm and abdominal muscles, but relaxation of the crural diaphragm; 2) infrahyoid muscle 

contraction and temporary decrease in pharyngeal pressure; 3) retrograde contraction of esophageal 

striated muscles; and 4) decrease of blood pressure, which was mediated by a vagal muscarinic pathway. 

This study identified a reliable method of inducing severe gagging and also the physiological features of 

severe gagging. Based on these results, we will investigate the neural mechanism of severe gagging in a 

further study.   
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