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Abstract

   We propose a useful tool for the visual acuity measurement from the results of parametric and non-

parametric bootstrap algorithms in the logistic regression model. We present the kurtosis and the variance 

of deviance residuals to estimate the efficiency of bootstrap resampling. We applied our parametric and non-

parametric algorithms to the problem of the visual acuity measurement and obtained the efficiency measures 

for the comparison of the parametric and non-parametric bootstrap resamplings. 

1. Introduction 

   Mita et al. [1] developed a statistical method for evaluating logarithmic visual acuity by logistic regression. 

In the paper [2] Mita et al. proposed the non-parametric bootstrap resampling algorithm for visual acuity 

measurement. Bach [3] and Schulze-Bonsel et al. [4] developed the automated procedures on the personal 

computer for measurements of visual acuity. Nagai et al. [5] proposed the statistical significance testing of 

difference between multiple thresholds by the constant stimuli method. 

   The bootstrap resampling technique provides a powerful procedure for estimating the variance of a 

parameter of a function. For the problems of the regression model we can refer to Habing [6], Hossain et 

al. [7] and Rashid [8]. Amiri et al. [9] showed that the performance of the parametric and non-parametric 

bootstrap for variance estimation depended on the sample kurtosis and on the kurtosis of distribution used 

to generate the bootstrap observations in the parametric method. 

   In the present paper we propose the parametric bootstrap resampling and show the comparison of 

parametric and non-parametric bootstrap results. We summarize our algorithms of [1] and [2] in which we 

adopt the logistic regression with the guessing rate in section 2 and the log-likelihood ratio test statistics of 

two-sample problems in section 3. We introduce the parametric and non-parametric bootstrap resamplings 

in section 4. Then we present the kurtosis and the variance of deviance residuals for the parametric and 

non-parametric resamplings in section 5. Finally, in section 6 we show an application of our parametric and 

non-parametric bootstrap algorithms to the visual acuity measurement. 
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2. Logistic regression and deviance residuals 

   We assume that the probability p is defined by

where

x is the explanatory variable,  and  are unknown parameters, 0 (0 ≤ 0 < 1) is a known constant which 

defines the guessing rate. 

    Let X be the set of binomial observations such that

where xj and µj ( j = 1, 2,··· , N ) are the explanatory variables and the outcome data respectively for j-th  

( j = 1, 2,··· , N ) observations. µj ( j = 1, 2, ··· , N ) are defined by

    The binomial likelihood ℓ( , , 0 ) is given by

where pj = p(xj ; ,  , 0 ) ( j = 1, 2, ··· , N ). Then we can obtain the optimal values  ˆ  and  ˆ for  and  

respectively by adopting the Fisher score method. By using  ˆ  and  ˆ we can compute the deviance D and the 

deviance residuals  0
j (  j = 1, 2, ··· , N ) such that

   where

3. Log-likelihood ratio test statistics of two-sample problems 

   Let X1 and X2 be the samples taken from the populations which have possibly different probability 

distributions 1 and 2 respectively. We shall test the following hypothesis: 

    Let X3 be the combined sample of X1 and X2 :
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Then we have the log-likelihood ratio test statistics G for the two-sample test: 

where Dk (k = 1, 2, 3) are the deviances for samples Xk (k = 1, 2, 3) respectively.

4. Parametric and non-parametric bootstrap resamplings of deviance residuals 

    Let 0 be the set of deviance residuals  0
j ( j = 1, 2, ··· , N ) obtained by logistic regression such that 

Let ¯0 and sd( 0) be the mean and standard deviation of 0. 

(i) Parametric bootstrap resampling 
   For the sufficiently large integer B (= number of bootstraps), let  b

j ( j = 1, 2, ··· , N ; b = 1, 2, ··· , B) be the 

random numbers which are generated by the Box-Muller method (refer to [10]). Then the distribution of 
b
j ( j = 1, 2, ··· , N ) for a specific b (1 ≤ b ≤ B) is approximately equal to N (0, 1), where N (0, 1) is the normal 

distribution with mean equalling to 0 and standard deviation equalling to 1. We define the parametric 

bootstrap resampling # of deviance residuals such that

   where

(ii) Non-parametric bootstrap resampling
    Let Ik (k = 1, 2, ··· , N ) be the intervals defined by

We set the one-to-one relationship between the deviance residuals  0
k and the intervals Ik for common index 

k = 1, 2, ··· , N.

   For the sufficiently large integer B (= number of bootstraps), let ub
j ( j = 1, 2, ··· , N ; b = 1, 2, ··· , B ) be 

the uniform random numbers chosen from the interval (0 , 1).
   Then we define the non-parametric bootstrap resampling  * of deviance residuals such that

5. Kurtosis and variances of deviance residuals

   Let K(Z ) be the kurtosis of a data set Z = { zj ( j = 1, 2, ··· , N )} defined by

where
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   Let K 0 = K( 0) be the kurtosis of the deviance residuals 0 = { 0
j ( j = 1, 2, ··· , N )} of logistic regression.

   Let K # and K * be the kurtosis of parametric and non-parametric bootstrap resamplings # and *  

respectively defined by

where

   Let V (Z ) be the variance of a data set Z = { zj ( j = 1, 2, ··· , N )}  in the sense of the maximum likelihood 

estimator such that

where

   Let V # and V * be the variances of parametric and non-parametric bootstrap resamplings  # and  * 

respectively defined by

   We define the efficiency measure e for the comparison of parametric and non-parametric bootstrap 

resamplings such that

6. Application to visual acuity measurement

(i) Logistic regression of samples 1, 2 and 3
   We use the same examples described in [2] which are summarized in the following:

   We took the data (sample size N1 = 120) from one individual with no visual abnormalities in order to 

assess our bootstrap algorithm. The LogVA (Logarithmic Visual Acuity) is 0.3681±0.0209 in complete 
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refractive correction and we adopt this data set as sample 1. The data of sample 2 (N2 = 80) is taken in 

+0.50D incomplete refractive correction from the same individual of sample 1. Sample 3 (N3 = 200) is 

constructed by the combined data of samples 1 and 2.

   Since we adopt the Landolt-C of four different orientations in our visual acuity measurement, the 

guessing rate 0 is chosen as 0 = 0.25. The explanatory variable x is the logarithmic visual acuity.

   The logistic regression results of samples 1, 2 and 3 are shown in Table 1. Figures 1, 2, and 3 show the 

observed data (dots ・) and  p̂(x) = p( x ;  ˆ ,  ˆ, 0 ) of samples 1, 2 and 3 respectively.

Table 1   Logistic regression results of samples 1, 2 and 3

Fig. 1   Observed data (dots・) and  p̂(x) = p( x ;  ˆ ,  ˆ, 0 ) of sample 1

Fig. 2   Observed data (dots・) and  p̂(x) = p( x ;  ˆ ,  ˆ, 0 ) of sample 2
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(ii) The visual acuity test of the two-sample problem
   We shall prove that the samples 1 and 2 are taken from the populations which have different distributions 

1 and 2 respectively. We shall adopt the following hypothesis:

   Let D0
k (k = 1, 2, 3) be the deviances for samples Xk (k = 1, 2, 3) respectively.

   Let Dk
*b and Dk

#b (k = 1, 2, 3; b = 1, 2, ··· , B ) be the deviances of non-parametric and parametric bootstraps 

respectively which are computed by adopting the deviance residuals k
*b and k

#b (k = 1, 2, 3; b = 1, 2, ··· , B ) 
respectively.

   Then we have

   Let ASL* and ASL# be the achieved significant level of non-parametric and parametric bootstraps 

respectively defined by

where

   Table 2 shows the results of the two-sample test by non-parametric and parametric bootstraps.

(iii) The visual acuity test of one-sample problem
   In the cases of one-sample tests of   and  , we adopt the following hypothesis:

Fig. 3   Observed data (dots・) and  p̂(x) = p( x ;  ˆ ,  ˆ, 0 ) of sample 3
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for , and

for .
   In the case of threshold  , we adopt the following hypothesis:

for  1 (sample 1) and  2 (sample 2).
   Let ASL* and ASL# be the achieved significant level of non-parametric and parametric bootstraps 

respectively.

   One-sample tests by bootstrap resampling for , ,   in samples 1, 2 are shown in Table 3.

Table 2   The two-sample test by bootstrap resampling

Table 3   One-sample test by bootstrap resampling
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(iv) Confidence interval of threshold
   For the optimal parameters  ˆ  and  ˆ , we define the threshold  ˆ with guessing rate 0

where

Then we can obtain the confidence interval I  of threshold  in confidence coefficient  (0 <  < 1) such that

where  (z ) (−∞ < z < +∞ ) is the cumulative distribution function of threshold which is obtained by 

bootstrap resampling.

   Table 3 shows the confidence intervals I *
0.95 and I #

0.95 of threshold for the non-parametric and parametric 

bootstrap respectively.

(v) Kurtosis and variances of deviance residuals
   Figures 4 (sample 1) and 5 (sample 2) show the distribution functions  f (z) of deviance residual  z = 0 − ¯0 .

   Table 4 shows the kurtosis and variances of deviance residuals for sample 1 (k = 1) and sample 2 (k = 2) :

We can see that the non-parametric K *
k (k = 1, 2) are nearly equal to K 0

k (k = 1, 2) respectively. The 

parametric K #
k (k = 1, 2) are nearly equal to 0 (which means that K #

k (k = 1, 2) are nearly equal to normal 

distributions). The efficiency measures ek = V *
k /V #

k (k = 1, 2) are

e1 = 0.98570,  e2 = 0.98005.

This means that the efficiencies of the non-parametric bootstraps are better than the parametric bootstraps 

(refer to [9]).

Fig. 4   The distribution function  f (z) of deviance residual  z = 0 − ¯0  of sample 1
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7. Concluding remarks
   We proposed the parametric and non-parametric bootstrap algorithms in the logistic regression model. 

The main properties of our algorithms are summarized as follows:

(i) logistic regression including the guessing rate,

(ii) log-likelihood test statistics of the two-sample problem,

(iii) parametric and non-parametric bootstrap resamplings of deviance residuals,

(iv) kurtosis and the variance of deviance residuals, and the efficiency measure for the comparison of 

parametric and non-parametric bootstrap resamplings.

   We applied our algorithms to the problem of the visual acuity measurement. We obtained the following 

results:

(i) We find that there are few differences between the parametric and non-parametric bootstrap results in 

the cases of two-sample and one-sample tests.

(ii) The efficiency measures show that the non-parametric bootstraps are better than parametric bootstraps. 

However, the differences of efficiencies are not large.

   We conclude that both parametric and non-parametric bootstrap algorithms provide useful tools for the 

Fig. 5   The distribution function  f (z) of deviance residual  z = 0 − ¯0  of sample 2

Table 4   Kurtosis and variances of deviance residuals
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visual acuity measurement. We shall continue to take more data from a wide range of patients and shall 

establish the reliable and handy tool which can be adopted by ophthalmologists everywhere.
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